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The Chebyshev semi-iterative method is used to accelerate the A iteration for solving the 
radiative transfer equation for a spectral line. For conditions typical of laser heated targets 
this method may be more efficient than those used in present calculations. 

Recent simulations of X-ray line emission spectra from laser produced plasmas 
have employed sophisticated non-local thermodynamic equilibrium radiative transfer 
models (2, 4, 8, 11, 12, 17, 191. These calculations involve a coupled solution of the 
radiative transfer equation and atomic rate equations. The hydrodynamic variables 
are assumed to be known; either from code calculations or experimental 
measurements. 

In this paper one aspect of such a calculation is investigated; the efficient solution 
of the radiative transfer equation for a single spectral line. This is relevant to the 
simulation of laser produced plasmas since the equivalent two-level atom approach 
[ 131 has been found adequate for such applications [ 121. Also the assumption of 
complete redistribution has been made. If the Eddington factor iteration method is 
employed (e.g. [ 121) then the most time-consuming part of the calculation is the 
solution of 

with appropriate boundary conditions. 
The frequency-dependent Eddington factors, f,, are given by 

(1) 

(2) 
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The Eddington factors are found from the formal, frequency by frequency, solution of 
the radiative transfer equation. The computational cost of this is small. The notation 
used above is that found in the astrophysical literature (e.g. 15, 131). For 
completeness we will give some definitions here. S, the line source function, is the 
ratio of emissivity to opacity within the spectral line. J,. is the mean intensity at 
frequency V. t is the line centre optical depth and #,, is the line absorption profile. u is 
defined by 

where p is the direction cosine with respect to the z axis and I,. is the specific 
intensity of radiation. 

B is the Planck function. E* and E ’ describe the possible ways of collisionally 
“destroying” photons. 

Present codes solve Eqs. (1) and (2) together. This involves solving a block 
tridiagonal system of DN X N blocks, where D is the number of depth points used 
and N is the number of frequency points. The computational effort involved in 
solving such a system scales as DN3. 

An alternative approach, the /1 iteration, is to solve Eq. (1) for an assumed value 
of S, recalculate S from Eq. (2) and iterate the whole process. The cost of such a 
calculation scales as D x N x number of iterations. The convergence rate of the /i 
iteration is poor; - l/s’ iterations are needed in an infinite atmosphere. However in 
conditions typical of laser heated targets, st - 0.1-0.01, optical depths -l-10”, the 
/i iteration technique has proved successful [S]. More recent work at the Naval 
Research Laboratory has used the core saturation technique [5] with considerable 
success [3]. 

A number of schemes have been developed in neutron transport to accelerate the /i 
iteration [ 141. One of these, the synthetic method relies on the existence of a good 
approximation to the /1 iteration matrix which may be efficiently inverted [ 11. This 
method has had great success when applied to the single group equation in the inner 
iteration of neutron transport calculations. Cannon [6] has applied a variant of this 
method to multi-frequency line radiation transfer calculations. Because of the 
coupling between all frequencies within the line and the fact that photon transport 
may be dominated by photons in the wings of the spectral line the construction of a 
good approximation to the /i iteration matrix presents considerable difficulties. 

It should be noted, however, that recent work [ 161 has had considerable success in 
plane one-dimensional radiation transfer problems. A more rigorous application of 
the synthetic method to multi-frequency problems (cf. Alcouffe [I]) will avoid these 
problems. However the computing time required for this is of the same order as that 
required for the variable Eddington factor method. 

An alternative acceleration tool is the Chebyshev semi-iterative method [ 181 which 
has been applied to neutron transport problems [9, 10). This is applicable to solving 
the second order form of the transfer equation with angle averaged redistribution 
since the iteration matrix is self-adjoint. In fact one would not expect the non-self- 



RADIATIVE TRANSFER CALCULATIONS 371 

adjoint character to play a very significant role in these calculations [7]. It should be 
stressed that the Chebyshev method has been sucessfully applied to non-self-adjoint 
problems in neutron transport [lo]. The author has found the method successful for 
accelerating the A iteration where the first order form of the radiation transfer 
equation was used. 

If we are to use the Chebyshev semi-iterative method we require a knowledge of 
the spectral radius of the .4 iteration matrix. This may be obtained if we use the 
technique described by Reed [ 151. To perform this analysis we must assume that the 
mesh spacing As, the Eddington factor,fT and the line profile #V are all independent of 
position. The application of the scheme is not subject to these assumptions. It is 
straightforward to show that the eigenvalues of the iteration matrix are given by 

g,=(l -et) “+a 
J 

$udv 

-m 1 + 1, f&f, A? ’ 

where Ak = 2(1 - cos z/k), k = 1, 2 ,..., D. Clearly the spectral radius of the iteration 
matrix is less than (1 - E+), its value in an infinite medium. 

The A iteration may be represented by 

AwK+’ = Bw” + u, (3) 

where u is a vector containing the depth and frequency variation of the radiation 
field; A is a matrix containing the difference representation of Eq. (1) and B is a 
matrix which contains information on the frequency quadrature which is used. If the 
vector, U, is grouped so as to consist of a number of sub-vectors each containing the 
position variation for a single frequency and three point differencing is used, then the 
matrix A is tridiagonal. 

Equation (3) may be re-expressed as 

wK+’ =MwK +A-‘u. 

(Note that M need never be evaluated explicitly.) 
The Chebyshev semi-iterative method is then given by 

w’ =Mw” +A-%, 

W m+1_ -~W,+,(Mwm+A~‘~-wWm-‘)+~m-‘, 

w, = 1: 

o&l > 1) = 1 + cm-‘(l/P) 
cm+ ‘(l/P) ’ 

where 1 > p > ]]M]] for a stable convergent scheme. C, are the Chebyshev 
polynomials. These may be calculated very easily by the relations 
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C,(x) = 1, 

C,(x) =x, 

After m iterations the size of the error associated with an eigenvector of M with 
eigenvalue Izi will be reduced by 

From this it can be seen that the error associated with a given eigenvector will not 
ncessarily be reduced from one iteration to the next. However, it is clear that the 
norm of the semi-iterative procedure after m steps is given by 

If p is equal to the spectral radius of M then we obtain 

IIPm(M>II = VCrnWP)~ m > 0, 

which is strictly decreasing for all m > 0. Clearly the convergence is improved as l/p 
increases. Thus we want to choose p as close to the maximum eigenvector of M as 
possible. For the case of complete redistribution urn need only represent a vector, 

ITERAT13NS 

FIG. 1. Convergence of A iteration (---) and Chebyshev semi-iterative method (-). F = IO-‘, 
Lorentz profile; S = B as initial guess. 
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FIG. 2. As Fig. 1, but with E = lo-*. 
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ITER9lIONS 

FIG. 3. As Fig. 1, but with E = 10m’. 
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length D, containing the values of (J). The extra storage needed for the semi-iterative 
method compared with the /1 iteration is minimal. 

We have compared the Chebyshev method and unaccelerated ,4 iteration on the 
following problem: a strict two-level atom and complete redistribution are assumed. 
The source function is of the form 

S = (1 - E)(J) + EB. 

A value of p = 1 - E was used in the calculations. 
The values of the Eddington factors were calculated from the formal solution of the 

radiation transfer equation with an initial estimate for the source function. It should 
be noted that similar convergence properties are found for all the stages of the 
Eddington factor iteration. The system which is modelled is a plane with total line 
centre optical depth of = 105. The grid which is used starts at t = lO-3 and used 5 
points per decade. We have estimated the error by the quantity 

x (GOiterated - lJ) 
grid points 

co...rged)2j “2 

Figures l-3 show the convergence of the A iteration and the Chebyshev scheme for a 
line with a Lorentz profile and value of E of lo-‘, lO-2 and 10m3. The error has been 
normalised to its value after the first A iteration. In each case the initial guess for the 
source function was S = B. We see (Figs. 2 and 3) that the error is not a strictly 
decreasing function of the number of iterations. This possibility was noted above. In 
Fig. 4, E = lo-* but an initial (and far worse) guess of S = BE was used. Here the 

10’ 1 1-i-. 
0.0 10.0 20.0 30 .o 40.0 53.1 

ITERRTIONS 

FIG. 4. As Fig. 2, but with S = EB as initial guess. 
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FIG. 5. As Fig. 2, but with Doppler profile. 

error vector is dominated by the slowest decaying mode and the error decreases 
moothly with iteration. Fig. 5 shows results with a Doppler profile, E = lo-’ and 
S = B initially. No marked differences to the behaviour with a Lorentz profile can be 
seen. The efficacy of the acceleration scheme has been found to be very insensitive to 
the frequency mesh which is used. 

In conclusion, we have demonstrated the possibility of using the Chebyshev 
method to accelerate the A iteration in radiation transfer calculations. For all 
problems encountered in simulating laser produced plasmas we would expect the 
Chebyshev method to be computationally faster than those methods presently 
employed in radiation transfer codes. 
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